Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application.

نویسندگان

  • Pallab Pradhan
  • Jyotsnendu Giri
  • Gopal Samanta
  • Haladhar Dev Sarma
  • Kaushala Prasad Mishra
  • Jayesh Bellare
  • Rinti Banerjee
  • Dhirendra Bahadur
چکیده

In this study, lauric acid-coated, superparamagnetic, nanoparticle-based magnetic fluids of different ferrites (Fe(3)O(4), MnFe(2)O(4), and CoFe(2)O(4)) were prepared and compared in terms of heating ability and biocompatibility to evaluate the feasibility of use in hyperthermia treatment of cancer. All the magnetic fluids prepared had particles of average sizes 9-11 nm. Heating ability of these magnetic fluids was evaluated by calorimetric measurement of specific absorption rate (SAR) at 300 kHz frequency and 15 kA/m field. Fe(3)O(4) and MnFe(2)O(4) showed higher SAR (120 and 97 W/g of ferrite, respectively) than CoFe(2)O(4) (37 W/g of ferrite). In vitro study on BHK 21 cell lines showed dose-dependent cell viability for all the magnetic fluids. Threshold-biocompatible ferrite concentration for all the magnetic fluids was 0.1 mg/mL. Above 0.2 mg/mL, CoFe(2)O(4) was more toxic than the other magnetic fluids. On intravenous injection of different doses (50, 200, and 400 mg/kg body weight) of magnetic fluids in mice, no significant changes in hematological and biochemical parameters were observed for Fe(3)O(4) and MnFe(2)O(4). With CoFe(2)O(4), an increase in SGPT levels at a dose rate of 400 mg/kg body weight was observed, indicating its mild hepatotoxic effect. However, histology of different vital organs showed no pathological changes for all the three magnetic fluids. Further, long term in vivo evaluation of biocompatibility of the lauric acid-coated ferrites is warranted. This study shows that lauric acid-coated, superparamagnetic Fe(3)O(4) and MnFe(2)O(4) may be used for hyperthermia treatment and are to be preferred over CoFe(2)O(4).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Overview of Cobalt Ferrite Core-Shell Nanoparticles for Magnetic Hyperthermia Applications

Cobalt ferrite nanoparticles (CoFe2O4) are well known for some distinctive characteristics such as high magnetic permeability and coercive force, good saturation magnetization, excellent physical, and chemical stability, which make them so attractive for magnetic storage, magnetic resonance imaging (MRI), drug delivery, optical-magnetic equipment, radar absorbing materials...

متن کامل

In vitro & in vivo toxicity of CoFe2O4 for application to magnetic hyperthermia

Magnetic nanoparticles offer some attractive possibilities in biomedicine because it has the special physical properties. Magnetic hyperthermia using magnetic nanoparticles requires that the magnetic particles have not only high heating ability in low magnetic field but also to be non-toxic for biomedical use. Although the reports of bulk magnetic materials or Fe3O4 nanoparticles have known for...

متن کامل

Preparation and Characterization of Manganese Ferrite Nanoparticles via Co-precipitation Method for Hyperthermia

       In this work, Mn ferrite nanopowders were prepared by co-precipitation method and were characterized. Phase identification of the nanopowders was performed by X-ray diffraction method and the mean particle size of the nanopowders was calculated by Scherrer's formula, using necessary corrections. Magnetic parameters of the prepared nanopowders were measured by a vibrating sample magnetome...

متن کامل

Physical and Magnetic Properties Comparison of Cobalt Ferrite Nanopowder Using Sol-gel and Sonochemical Methods

Cobalt ferrite or CoFe2O4 has unique physical and magnetic properties depend on its synthesis method. The application of cobalt ferrite as nanomedicine material become more interesting, however analysis on physical and magnetic properties based on synthesis method have not been discussed. The cobalt ferrite in this research was synthesised using two different methods: the ...

متن کامل

Evaluation of the Effects of Injection Velocity and Different Gel Concentrations on Nanoparticles in Hyperthermia Therapy

Background and objective: In magnetic fluid hyperthermia therapy, controlling temperature elevation and optimizing heat generation is an immense challenge in practice. The resultant heating configuration by magnetic fluid in the tumor is closely related to the dispersion of particles, frequency and intensity of magnetic field, and biological tissue properties.Methods: In this study, to solve he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part B, Applied biomaterials

دوره 81 1  شماره 

صفحات  -

تاریخ انتشار 2007